
BSCW Stability at M=0.8, AoA=5.0

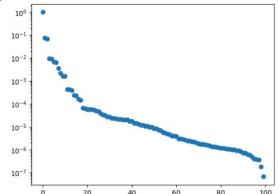
- The flow is nonlinear
 - Stability characteristics are then potentially dependent on perturbation amplitude
- Participants are using different forms and amplitudes of perturbation
 - Release from undeformed jig shape
 - Generalized velocity perturbations
- If this case is not a linear flutter (independent of perturbation size), how do we compare results across groups?
 - What variable do we put on the y-axis?

Approach

- Pawel has asked some participants for their simulation history data as an initial test
 - Modal displacements and velocities versus time, dynamic pressure, freestream velocity, mode shapes.
- We've put together python scripts to process this data from each group into the same data structures
 - Computes several variables that could potentially be the y-axis
 - Computes a damping value using the Matrix Pencil method
 - Assign an "eyeball" observation: look at time history and assign "damping" as unstable, lightly damped, unknown, etc.
- Generate a plot: {y-var} versus dynamic pressure, color symbols by damping

```
def get_technion_signals(self):
directory = 'technion_ezair'
signals = [
EZAirSignal(f'{directory}/EZAir_Flutter_Data_10_Jul_2022_Qinf_50psf_Uinf_132m2s_gvel0.csv', 0.0, 'lightly unstable'),
EZAirSignal(f'{directory}/EZAir_Flutter_Data_01_Sep_2022_Qinf_75psf_Uinf_132m2s_gvel0.csv', 0.0, 'unstable'),
```

```
def get_nasa_gvel_perturbation_signals(self):
directory = 'nasa_gvel'
signals = [
AehistSignal(f'{directory}/Q25/Gvel0p5', 38.0, 'lightly damped'),
AehistSignal(f'{directory}/Q25/Gvel5', 38.0, 'lightly damped'),
AehistSignal(f'{directory}/Q50/Gvel5', 22.8, 'lightly damped'),
AehistSignal(f'{directory}/Q50/Gvel5', 22.8, 'lightly damped'),
```


Matrix Pencil Method [2]

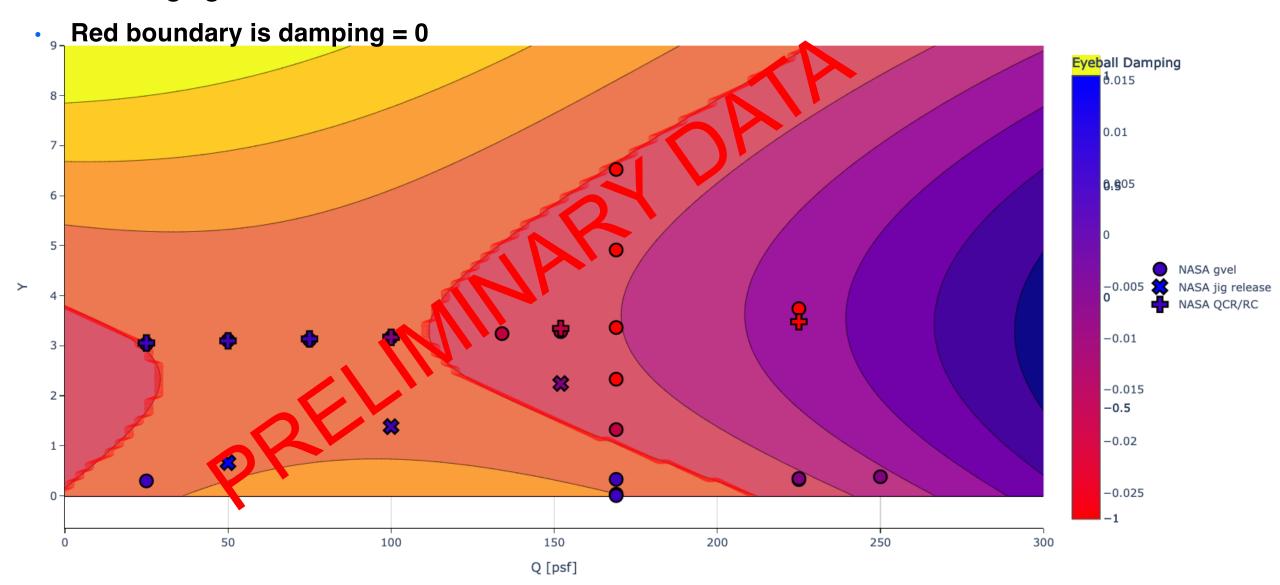
- 1. Choose start time and end time from original signal*
- 2. Assumes a Prony series solution + noise term

$$y_n = \sum_{k=1}^{M} c_k e^{s_k n} + w_n, \qquad n = 1, \dots, N$$

3. Filter the noise based on singular values of Hankel matrix of the time series

4. After filtering, the eigenvalues of the system represent the components of the Prony series, $damping = Re(s_k)$

Resulting plot: FUN3D data



FUN3D Stability Boundary

Fit a Kriging model to FUN3D data

Resulting plot: all provided data

Questions to explore

- How long of a window should the matrix pencil be applied over?
 - Linear assumption for Prony series could be poor if the damping is varying over a long signal history?
- Other ideas for what the y axis variable should be?
- Are there any trends across participants that can be established?
- For data sets that disagree, how do we determine why the predictions are different? More detailed information about flow characteristics?